Gaussian integer points of analytic functions in a half - plane

نویسنده

  • Alastair Fletcher
چکیده

A classical result of Pólya states that 2 is the slowest growing transcendental entire function taking integer values on the non-negative integers. Langley generalised this result to show that 2 is the slowest growing transcendental function in the closed right halfplane Ω = {z ∈ C : <(z) ≥ 0} taking integer values on the non-negative integers. Let E be a subset of the Gaussian integers in the open right half-plane with positive lower density and let f be an analytic function in Ω taking values in the Gaussian integers on E. Then in this paper we prove that if f does not grow too rapidly, then f must be a polynomial. More precisely, there exists L > 0 such that if either the order of growth of f is less than 2 or the order of growth is 2 and the type is less than L, then f is a polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer points of analytic functions in a half-plane

It is shown that if f is an analytic function of sufficiently small exponential type in the right half-plane, which takes integer values on a subset of the positive integers having positive lower density, then f is a polynomial. MSC2000: 30D20, 30D35.

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

An equivalent representation for weighted supremum norm on the upper half-plane

In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008